contact us

Use the form on the right to email us, or by phone or mail.

Phone

503.248.1182

Office

5200 S Macadam Ave Suite 160

Portland OR 97239

1306 NW Hoyt St #411
Portland, OR 97209

(503) 248-1182

Naturopathic Medicine, Neurotherapy

2013-09-23 17.41.27.jpg

Articles

Inability to handle rejection a troubling ADHD symptom

Noel Thomas ND

252 ADHD and rejection dysphoria

Most people automatically associate ADHD with hyperactivity, inattention, and impulsivity — all easily observed from the outside. However, for those who experience this disorder one of the most challenging aspects is invisible to the onlooker — a severe reaction to rejection.

The debilitating experience of rejection sensitive dysphoria

Nobody likes being rejected or falling short of expectations, but for those with ADHD, the response to these situations can be extreme.

Common to ADHD patients, rejection sensitive dysphoria (RSD) is intense sensitivity and emotional pain triggered by the perception — not necessarily the reality — of being rejected, teased, or criticized by those who are important to you.

Also triggered by a sense of falling short of one's own standards or of others' expectations, RSD is the most debilitating aspect for 30 percent of people with ADHD.

People with ADHD aren't weak or "too sensitive" — their brains actually perceive these situations as more painful than others do, and their emotional response hurts them much more than for those without the condition. Some even experience it as physical pain in the region of the chest.

When coping with RSD, a person may internalize or externalize their reaction — and sometimes both:

Internalized RSD can manifest as a major mood disorder, with sudden shifts from feeling fine to feeling intensely sad, even to the point of suicidal ideation. Often misdiagnosed as rapid cycling bipolar disorder, this aspect of RSD is frequently missed by healthcare practitioners.

Externalized RSD may look like a flash of rage at the person or situation at the source of the pain. Possibly related, half of the people assigned court-ordered anger-management treatment have previously unrecognized ADHD.

Those who suffer from RSD tend to anticipate rejection and cope in one or both of these ways:

  • Becoming antisocial to avoid the expected rejection. Even the slight possibility of falling short in front of others is too painful and risky to consider. Meanwhile, these smart, capable people give up on social life, applying for jobs, or public engagements because of the fear. This social withdrawal can look like social phobia, which is a serious fear of being embarrassed in public, but they are not the same thing.
  • Becoming an avid people-pleaser in an attempt to prevent the situations that cause so much pain. They scan those they interact with to try to determine what will make them happy, then become that person in an effort to be accepted. Some do this at the expense of their true personality. Others cope by becoming overachievers, but the search for perfection is never satisfied, leading to more effort at achievement.

While RSD episodes are intense and don't last very long, recovery can take some time.

Perceptions and self-fulfilling prophesies

RSD can affect relationships with friends, family, and romantic partners. The ongoing perception that you're being rejected can turn into a self-fulfilling prophecy.

Perception is the key word: Someone with RSD might feel they are being rejected or criticized, but the situation may not really exist.

This is also known as a self-fulfilling prophecy: An individual believes something is true, acts as if it was true, anticipates a particular outcome, and this expectation changes their emotional behavior.

As a result, they set themselves up to receive the feedback they expect, which only reinforces the belief.

Do I have RSD?

Some RSD symptoms are shared with other mental health conditions leading it to be confused with:

  • Bipolar disorder
  • Depression
  • Social phobia
  • Borderline personality disorder
  • Post-traumatic stress disorder (PTSD)
  • Obsessive-compulsive disorder (OCD)

Because RSD can look like other disorders, it's important to get a proper diagnosis so you can get treatment and learn the right coping skills. If you have ADHD and experience any of these symptoms, see your mental health provider:

  • Feel easily embarrassed in social situations.
  • Feel instant rage or have an emotional outburst when you think someone has teased, criticized, or rejected you.
  • Feel anxious in social settings.
  • Set overly-high standards for yourself that you often can't meet.
  • Have low self-esteem.
  • Avoid social situations.
  • Feel like a failure because you haven't lived up to your own or others' expectations.
  • Think about hurting yourself.
  • Constantly feel under pressure.
  • Avoid trying new things due to fear of failure.
  • In a constant state of panic in your relationships.
  • Unbearable anxiety.
  • Often feel depressed and alone.
  • Feel constantly rejected by friends, family, or your partner.
  • Generally good at hiding your sensitivities.

How do I manage rejection sensitivity?

Aside from getting a diagnosis, the following can help you cope with RSD:

Stay ahead of your emotions. If you feel an episode coming, try to process your emotions rationally. Realize your sense of perfectionism and let it go. Remember that what you perceive as the cause of the rejection may not actually exist.

Seek counseling. A mental health counselor can help you learn how to cope with the extreme reactions common to RSD. However, counseling isn't considered the first treatment option, because the fast reactions caused by RSD are in the moment and they overwhelm the mind.

Reduce your stress factors. Stress over-taxes your nervous and endocrine systems, making it harder for you to cope with situations where your RSD may flare up. In functional neurology we can help create a comprehensive diet and lifestyle plan to reduce and manage your stress level.

There are two possible medication options for RSD:

Alpha-agonist medications. Originally designed as blood pressure medications, guanfacine and clonidine can help. While only 30 percent of people experience relief from either medication alone, 60 percent experience better benefits when both are used.

Successfully treated patients report feeling at peace, as if they have "emotional armor," plus having fewer thoughts at one time.

Monoamine oxidase inhibitors (MAOI) used off-label (for a condition other than that for which it has been officially approved). Effective for both the emotional and attention/impulsivity components of ADHD, this is the traditional treatment of choice.

MAOIs are FDA-approved for mood and anxiety disorders, but patients must avoid the following:

  • Foods that are aged instead of cooked
  • First-line ADHD stimulants
  • All antidepressant medications
  • OTC cold, sinus, and hay fever medications
  • OTC cough remedies
  • Some forms of anesthesia

If you experience RSD, remember you aren't alone: it is experienced by a surprising 98 to 99 percent of adolescents and adults with ADHD and 1 in 3 say it's the hardest part of living with the condition.

For some people, just knowing that RSD is a common part of ADHD brings comfort. It's not your fault, you are not damaged, and there are ways you can improve your reactions to these painful situations to live a full and healthy life.

In functional neurology we have a variety of non-pharmaceutical brain rehabilitation techniques customized to your unique neurology that can help you better manage your ADHD, RSD, and other related symptoms. Ask our office for more advice.

Moss-like plant can act on brain’s cannibinoid receptors

Noel Thomas ND

Liverwort

Medicinal use of cannabis is a subject of debate in the US and around the world, however, discovery of the endocannabinoid system has been an important finding thanks to cannabis research. But not everyone who may benefit from the medicinal properties of cannabis wants to use the plant or can access it legally.

Turns out we have options. While it was previously thought that Cannabis sativa was the only plant to produce the medicinal cannabinoid compounds, a family of plants found in Japan, New Zealand, and Costa Rica has been found to offer similar benefits without the psychoactive effects of cannabis.

Patients seek less psychoactive cannabinoids

Cannabinoids are signaling chemicals produced naturally in our bodies. These molecules interact with the cannabinoid receptors found in the brain, immune system, connective tissues, and organs, playing a role in inflammation, pain, mood, appetite, memory, and more.

The Cannabis sativa plant also produces a wide variety of chemical compounds known as cannabinoids.

Tetrahydrocannabinol (THC) and cannabidiol (CBD) are two of the most abundant and well-known cannabinoids. While THC is known for its anti-inflammatory and psychoactive properties, more and more patients are asking for CBD because it has less of a psychoactive effect while combating inflammation.

Cannabis-based cannabinoids are used for a wide range of therapeutic applications, including:

  • Inflammation
  • Chronic pain
  • Loss of appetite
  • Asthma
  • Insomnia
  • Anorexia
  • HIV/AIDS
  • Depression
  • IBD
  • Endometriosis
  • Fibromyalgia
  • Spasticity associated with MS
  • Intractable seizures
  • Nausea and vomiting associated with chemotherapy

Some states have legalized medical cannabis and even taken steps to legalize recreational use. At the same time, many patients are advocating for increased research due to its potential health benefits and smaller list of side effects compared to pharmaceutical options.

Perrottetinene less psychoactive than THC

In 1994, Japanese phytochemist Yoshinori Asakawa discovered perrottetinene (PET), a compound found in liverwort, but at the time nothing was known about its pharmacological effects.

Then Jürg Gertsch, a Swiss researcher, noticed the rare moss-like liverwort plant was being promoted online for its "legal high" and medicinal uses.

Gertsch and his team developed a new synthesis method to produce large amounts of PET without having to isolate it from the actual plant.

Using mouse and cell models the team found that PET has a molecular structure similar to THC, enabling it to easily attach to the brain’s cannabinoid receptors.

While PET reaches the brain relatively easily it activates cannabinoid receptors to a lesser degree than THC. As a result, PET is much less psychoactive than THC, making it more attractive for medicinal users or for those with moral objections to cannabis.

In another contrast to THC, PET more strongly inhibits prostaglandins in the brain, thus lowering inflammation in the brain.

“In a direct comparison I think PET is the better version of THC,” Gertsch concluded.

According to Ethan Russo M.D., a neurologist and cannabis researcher, this makes PET potentially useful medically because it provides effective anti-inflammatory and painkiller effects without the risk of intoxication, liver ulcers, heart attack, and stroke from NSAIDs and other pharmaceutical interventions.

Russo also noted that this new research should promote additional biochemical research into other liverwort species.

So far PET has only been studied on mice brains and further research is necessary for chronic and inflammatory pain.

It was previously believed that Cannabis Sativa was the only plant to produce cannabinoids. We now know three species of liverwort — Radula perrottetii, Radula marginata, and Radula laxiramea — produce the compound, although only in tiny quantities.

The potential of the liverwort family isn't a total surprise. The Maori people of New Zealand have used the liverwort plant for centuries to treat disorders of the liver and digestive system, and it has long been used in traditional western herbal medicine.

Functional neurology and functional medicine offer effective alternatives to the opiates that have turned into an addiction crisis. In functional neurology we often see chronic pain stem from dysfunctions in the brain, negative feedback loops, and negative plasticity — or a brain that has become highly efficient at producing pain so it happens too easily.

Ask our office how functional neurology and functional medicine can help you relieve your chronic pain.

The cerebellum’s role is greater than we knew

Noel Thomas ND

250 cerebellum new uses

The cerebellum is located at the base of the skull where the spinal cord meets the brain. For years, scientists have believed its only roles were in helping to coordinate and regulate voluntary movement such as walking or writing. However, we've learned it plays a much larger role acting as the brain's “quality control unit.”

An ancient brain structure

Evolutionarily speaking, the cerebellum is an ancient brain structure common to humans, lizards, and fish. It takes up a relatively small portion of the human brain — about 10 percent by weight — but it contains about half of the brain's neurons, specialized brain cells that transmit signals.

More well-protected than other areas of the brain because it sits at the base of the back of the head, we've long known that the cerebellum coordinates voluntary movement.

Any time you shift your balance, coordinate multiple muscle groups, move your eyes, speak, or learn a new movement such as playing a musical instrument or riding a bike, you are using your cerebellum.

The primary integrator of information

The cerebellum is a primary integrator of information for the brain. The body's hundreds of thousands of receptors for vision, motion, and positioning constantly send information to the brain where the cerebellum condenses it and "gates" it on its way to the brain's cortex. The cortex then decides what the cerebellum will tell the body to do about the information.

The brain's ultimate quality control unit

Only a handful of researchers have explored cerebellum functions that might reach beyond motor control. Exciting new research out of Washington University has revealed that the cerebellum isn't only involved in sensory-motor function.

"It's involved in everything we do," says Dr. Jeremy Schmahmann, a neurology professor at Harvard and director of the ataxia unit at Massachusetts General Hospital who was not involved in the study.

It turns out that what the cerebellum does for motor control it also does for cognition and emotion.

The team found that only 20 percent of the cerebellum is dedicated to physical motion while a surprising 80 percent is dedicated to other functions such as:

  • Emotion
  • Memory
  • Language
  • Planning
  • Abstract thinking

The cerebellum isn't directly responsible for those tasks. Instead, it appears to monitor those brain areas doing the work and helps them perform better by constantly reviewing and improving them.

"We already thought that the cerebellum was cooler than most people thought, but these results were way more exciting and clear than I could have ever dreamt," says Dr. Nico Dosenbach, a professor of neurology at Washington University whose lab conducted the study.

A compromised cerebellum results in poor balance and worse

When the cerebellum loses function, it starts to fail at this job of gating information to the cortex. This provides the cortex with more information than it can manage, causing a form of sensory overload resulting in symptoms such as:

  • Anxiety
  • Irritability
  • Emotional reactivity
  • Insomnia due to a racing mind
  • Light sensitivity
  • Blood pressure changes
  • Digestive issues

Common signs of a damaged cerebellum also involve disturbances in muscle control such as:

  • Loss of coordination of motor movement
  • Inability to judge distance and know when to stop
  • Inability to perform rapid alternating movements
  • Staggering, wide-based walking
  • Movement tremors
  • Tendency toward falling
  • Slurred speech
  • Weak muscles
  • Abnormal eye movements

In addition, the cerebellum easily falls prey to environmental toxins, oxidative stress, and food sensitivities — especially gluten.

It also commonly degenerates with age, which is why so many seniors seem to have trouble with balance.

Schmahmann also says that a poorly functioning cerebellum can lead to brain disorders such as depression, schizophrenia, autism, and obsessive-compulsive disorder. He and others will attempt to treat patients by improving their cerebellum function.

Is my cerebellum compromised?

One way to test if your cerebellum is not functioning optimally is to stand with your feet together and close your eyes. If you sway more to one side, it may indicate that side of your cerebellum is more compromised.

Other tests we can use to determine your cerebellum function include:

  • Finger to nose with eyes closed
  • Walking heel-to-heel in a straight line
  • Complex alternating movements
  • Ocular tracking

Other signs your cerebellum is not responding properly to its environment may include dizziness, nausea in cars or on boats, or nausea or dizziness when seeing things move swiftly such as in movies.

It's not uncommon for Hashimoto’s hypothyroidism patients to have autoimmunity against their cerebellum. If you have Hashimoto’s and also have symptoms pertaining to balance, dizziness, or nausea, ask our office about screening for brain autoimmunity.

Our busy lives present many challenges when it comes to healthy brain function, such as non-stop stress, inflammatory diets, lack of exercise, unstable blood sugar, and sleep deprivation.

Functional neurology and functional medicine offer ways to improve cerebellar function through diet, lifestyle, and customized brain rehabilitation exercises to improve various areas of the brain. Ask my office for information about how we can use functional neurology to improve yours.

Women react differently to cannabis than men

Noel Thomas ND

249 cannabis affects women differently

The use of cannabis for both medical and recreational purposes is increasing along with the growing trend of legalization in many states. As new studies abound regarding its health benefits, we are also learning that men and women can respond very differently to cannabis. This information may lead to improved methods for coping with addiction and other health issues.

The endocannabinoid system, or the body’s own production of “cannabis”

In school we learn about eleven major systems in the body — the respiratory, circulatory, urinary, reproductive, integumentary, skeletal, muscular, nervous, endocrine, lymphatic and digestive systems.

Twenty-five years ago, a scientist researching the effect of THC, the primary intoxicant in cannabis, discovered a twelfth system, the endocannabinoid system (ECS).

He found a highly complex network of receptors in the body’s nervous system now called cannabinoid receptors.

This discovery sent researchers on a hunt for the chemicals naturally produced in our bodies designed to interact with these receptors, now called cannabinoids.

Cannabinoids are endogenous (produced within the body) signaling molecules that bind to and activate the cannabinoid receptors found in the brain, organs, connective tissues, glands, and immune system.

The ECS has complex actions in our immune system, nervous system, and all of the body’s organs, and plays a role in:

  • Inflammation
  • Appetite
  • Pain
  • Mood
  • Memory
  • Reproduction
  • Cancer prevention

The ECS also plays a role in how exercise affects the brain and body. Because endocannabinoids can cross the blood–brain barrier, it has been suggested that the endocannabinoid anandamide contributes to the development of the exercise-induced euphoria commonly called "runner's high."

Women and men react differently to cannabis

A new review of animal studies revealed that sex differences in response to cannabis are both socio-cultural and biological, which contributes to our understanding of the different ways women and men respond to cannabis. This invites questions on how addiction treatment strategies may differ between the sexes.

Men are four times more likely to try cannabis than women. They are also more likely to use higher doses and use it more frequently. Researchers say this may be because the male sex hormone testosterone increases risk-taking behavior and suppresses the reward system in their brains.

But while women try cannabis less often and use lower doses than men, a study showed women seem to be more neurochemically vulnerable to developing addiction to cannabis.

Studies in rats show the female hormone estradiol (the most active form of estrogen) affects movement, social behavior, and sensory input to the brain through its effect on the ECS.

It also showed that the female rats had more sensitive endocannabinoid receptors in these areas of the brain compared to the male rats. The female rats also showed more significant hormone changes during the menstrual cycle that affect the female response to cannabinoids.

Research on humans shows that in women blood levels of enzymes that break down cannabinoids fluctuate during the menstrual cycle and brain levels of cannabinoid receptors increase with aging. Both of these factors mirror changes in estradiol.

As research into the interactions between cannabinoids and sex hormones evolves, we'll be able to better assess the impact of cannabis use on women and men and how to better address addiction.

Creating gender-based addiction rehabilitation, detoxification treatments, and relapse prevention strategies for patients with cannabis addiction can improve success rates.

The endocannabinoid system is vital to good health

A functioning ECS produces its own cannabinoids and is vital to good health. The ECS helps bring balance to the body, and may even be effective for restoring balance in relation to many health conditions such as neurodegenerative disorders, autoimmune diseases such as rheumatoid arthritis, and cancer.

Scientists have found that the ECS is dysfunctional in certain conditions associated with hypersensitivity to pain or stimulus such as fibromyalgia, migraines, and IBS.

The existence of the ECS explains why cannabinoids in hemp and other plants are therapeutic for some people by supporting and enhancing the ECS.

The cannabis plant contains more than 100 different cannabinoids with THC being perhaps the most well-known due to its psychoactive qualities. However, with the legalization of cannabis in many states, supplement producers are focused on cannabidiol (CBD) and terpenes, which are not psychoactive — and more frequently allowed by law.

CBD is now widely recognized as the compound responsible for many of the medicinal effects of hemp-based cannabis. Terpenes are the medicinal compounds that give cannabis its distinctive aroma.

There is debate over whether CBD and terpenes are individually therapeutic or whether they work better together in whole plant formulations. Some CBD producers offer both options.

Controversy also exists around whether CBD from non-psychoactive industrial hemp is as effective as CBD from cannabis, which has higher THC levels. Many CBD producers use hemp in order to comply with state and federal rules and to appeal to medical users who don't want to dabble in the psychoactive realm.

Support your cannabinoid system naturally

To boost your endocannabinoid system, adopt these easy lifestyle and dietary habits:

  • Avoid alcohol and the associated inflammation.
  • Get bodywork such as massage to increase anandamide, the "bliss" cannabinoid.
  • Eat plenty of leafy greens; they contain a terpene that activates cannabinoid receptors.
  • Eat plenty of Omega 3 essential fatty acids.
  • Exercise regularly (but don't over do it) to naturally maximize your "runner's high."

Gum disease has been shown to lead to Alzheimer’s

Noel Thomas ND

248 periodontal disease Alzheimers

It has long been known that periodontal disease — a common but preventable gum infection — is linked with health issues such as heart disease, mood disorders, and Type 2 diabetes. While periodontal disease has previously been associated with dementia and cognitive impairment, a recent study is the first to reveal that exposure to periodontal bacteria supports development of plaques that promote the neuropathology found in Alzheimer's disease.

Poor mouth care leads to periodontal disease

Our mouths naturally host many bacteria. Along with mucus and other particles, bacteria form a colorless plaque on the teeth. Regular brushing and flossing help remove plaque, yet when it is not removed it can harden into tartar that brushing won't remove. This can lead to periodontal disease and higher risk for a variety of associated health problems.

Look for the following symptoms of periodontal disease:

  • Red or swollen gums
  • Tender or bleeding gums
  • Receding gums or teeth that appear longer than before
  • Bad breath that won't go away
  • Loose teeth
  • Painful chewing
  • Loss of teeth

Risk factors for gum disease include:

  • Smoking
  • Diabetes
  • Hormonal changes in women (pregnancy, contraceptives, menopause)
  • Medications that reduce the flow of saliva
  • AIDS and other illnesses (and their medications)
  • Genetic susceptibility
  • Stress
  • Fillings that have become defective and leave gaps
  • Dental bridges that no longer fit
  • Poor diet

Periodontal bacteria linked to Alzheimer's-like plaques in the brain

A team at the University of Illinois recently found that long-term exposure to periodontal disease bacteria in mice causes inflammation and degeneration of neurons (brain cells) similar to the effects of Alzheimer's in humans.

In a comparison to mice who were not exposed to the bacteria, the exposed mice were found to have:

  • Significantly higher levels of accumulated amyloid plaque, also found in the brain tissue of patients with Alzheimer's disease.
  • Fewer intact neurons and more brain inflammation.
  • DNA from the periodontal bacteria found in their brain tissue.
  • A bacterial protein found inside their neurons.

While much of Alzheimer's research is done on mice that are specially bred to be prone to the disease, the results of this study were reinforced by the fact that the mice were "wild-type," or not genetically primed to develop Alzheimer's.

Alzheimer's accounts for 60 to 80 percent of dementia cases

Dementia is a general term applied to multiple conditions causing memory loss and other cognitive issues that interfere with one's ability to cope with daily life.

Alzheimer's is a progressive dementia, generally worsening over a period of years.

In the early stages a person may still function independently, driving, working, and engaging in social life. One might notice memory lapses, and difficulty with word recall and location of objects, but symptoms are subtle and not always recognized by the patient or their family and friends.

Moderate Alzheimer's tends to be the longest phase. A person may have more difficulty coping with daily tasks that require mental focus, and memory continues to decline. Mood issues may arise, as well as changes in sleep patterns and increased risk of wandering and getting lost.

In late stage Alzheimer's, individuals lose the ability to have a conversation, respond to their surroundings, and even control their own movements.

Optimize your oral health

While we still have a lot to learn about how oral health relates to Alzheimer's and other diseases, we do know it's wise to take the best care possible of our teeth and gums by adopting these habits:

Brush twice a day for two minutes each time. Make sure to vary the movements and get to all the hard-to-reach places.

Floss daily to remove food and plaque from the spaces between teeth, using regular floss, a special brush, or a water flosser.

Oil pulling. This ancient practice of swishing coconut oil through the teeth has shown to whiten teeth and reduce bacterial counts in the mouth.

Inspect your mouth regularly for gaps between the teeth and gums, redness, bleeding, or teeth that seem to be getting longer.

Visit your dentist regularly for cleanings.

Don't smoke. Smokers have significantly more risk for gum disease than non-smokers. Smoking also reduces chances for successful treatment of gum disease.

Eat a diet low in sugars and rich in vegetables, fruits, legumes, nuts, and fatty fish to provide essential nutrients and help quell inflammation. Some evidence shows omega-3 fatty acids help reduce the risk of periodontal disease.

Functional neurology helps prevent Alzheimer’s

Understanding the causes and risk factors for Alzheimer's is key for developing successful treatment protocols, especially since more than 95 percent of cases are late-onset with largely unknown causes.

If you are suffering from early stages of memory loss and other early warning signs of dementia, it’s important to take action right away.

In functional neurology we perform a comprehensive brain exam to see which areas of your brain are under active, over active, or degenerating too quickly. Customized brain rehabilitation exercises can help restore your brain function and health and stop the accelerated degeneration associated with dementia and Alzheimer’s.

Additionally, in addition to considering your oral health, we also use functional medicine strategies to evaluate and address your overall health so your brain has an optimal chemical environment in which to operate. This includes looking at your diet, lifestyle, supplementation, gut and immune health, blood sugar stability, chronic infections, and exposure to toxins.

Please contact my office for more information about how functional medicine can help you protect your long-term health.

If your insurance doesn't offer dental coverage and you can't afford it on your own, you may be able to find help via these resources: