contact us

Use the form on the right to email us, or by phone or mail.

Phone

503.248.1182

Office

5200 S Macadam Ave Suite 160

Portland OR 97239

1306 NW Hoyt St #411
Portland, OR 97209

(503) 248-1182

Naturopathic Medicine, Neurotherapy

2013-09-23 17.41.27.jpg

Articles

Food reactions linked to MS and neuro-autoimmune diseases

Noel Thomas ND

FNM 307 MS food allergy link

A recent study by Brigham and Women’s Hospital found subjects with food allergies experienced a higher rate of multiple sclerosis (MS) disease activity than those without food allergies.

Researchers divided a group of 1,349 patients into four allergy groups: environmental, drug, food, and no known allergies. They assessed these groups in relation to:

  • Number of MS attacks
  • Expanded disability status scale (EDSS)
  • MS severity score (MSSS)
  • Radiological variables: presence of gadolinium-enhancing lesions and lesion count.

While the drug and environmental allergy groups did not show significant differences compared with the no-allergy group, the food allergy group showed a 1.38 times higher rate in the number of attacks, and more than twice the likelihood of having gadolinium-enhancing lesions on MRI. Gadolinium enhancement is a marker for blood-brain barrier breakdown and correlates with the inflammatory phase of MS lesion development.

According to study author Tanuja Chitnis, MD, "Food allergies perturb the immune system in ways that seem to increase MS inflammatory activity."

Researchers also suggested gut bacteria, or the microbiome, is an important factor. Further studies on the microbiome and diet may provide more information.

Food allergies vs. food sensitivities in MS and neurological autoimmune diseases

Unfortunately, the study did not differentiate between true food allergy and food sensitivities — more research is required to identify which is at the root of these reactions.

Distinguishing between food allergy and food sensitivity is key for grasping how your diet may affect your symptoms.

A true food allergy is an overreaction by your immune system to a protein it perceives as a threat. Within seconds or minutes, it mobilizes fighter proteins called immunoglobulin E (IgE) to drive the invader out, resulting in these immediate symptoms:

  • Rash, hives, or itching
  • Stomach pain
  • Diarrhea
  • Shortness of breath
  • Chest pain
  • Swelling in the airways
  • Anaphylaxis

Food sensitivities begin in a similar fashion, but less aggressive immunoglobulin G (IgG) proteins are mobilized. They may not show their effects for hours or days (or even longer) after the pathogen has entered the body. Symptoms vary widely and include:

  • Brain fog
  • Systemic inflammation
  • Mood disorders
  • Gut disturbances
  • Low energy
  • Joint pain
  • And many more

Because food sensitivity reactions are slower, not as obvious, and typically not potentially deadly, doctors tend to dismiss them. However, their slow-acting effects can still be extremely hazardous to someone with neurological autoimmunity such as MS.

Inflammation and the brain

If you are familiar with “leaky gut” you understand it occurs when the lining of the small intestine becomes overly porous. This allows toxins, undigested food molecules, and other pathogens into the bloodstream, triggering an immune cascade that raises your risk for food sensitivities, pain, systemic inflammation, and autoimmunity.

Like the gut lining, the blood-brain barrier is the protective layer around the brain that allows nutrients in while keeping pathogens out. The same factors that cause leaky gut can also cause the blood-brain barrier to become “leaky,” causing inflammation in the brain.

One of the worst consequences of food sensitivities and chronic inflammation in the brain is over activation of glial cells, the brain’s immune clean-up crew.

Under normal circumstances glial cells remove debris and dead cells from the brain and then the brain returns to normal. However, glial cells don’t have an easy off-switch, and when confronted by chronic inflammation, they go haywire, creating a further inflammatory cascade that can result in:

  • Brain fog
  • Depression and anxiety
  • Schizophrenia and other severe psychological disorders\
  • ADHD
  • Headaches and migraines
  • Cognitive impairment
  • Alzheimer’s and Parkinson’s disease
  • Neurological symptoms

Functional neurology for brain inflammation?

To manage your brain inflammation, you must determine if you have food sensitivities. This can be done either with sensitive lab testing by Cyrex Labs, or by an elimination and reintroduction diet that helps determine the offending foods. These are strategies we use in functional neurology to help guide you through the process.

Functional neurology offers many other ways to help reduce brain inflammation and associated symptoms:

Functional neurology rehabilitation. In functional neurology, we use comprehensive examinations and customized rehabilitation protocols to target the areas of your brain and nervous system that need support.

Regular exercise. Raising your heart rate floods your brain with oxygen, nutrients, and anti-inflammatory brain-derived neurotrophic factor (BDNF), which helps your neurons communicate better.

Blood sugar regulation. Keeping your blood sugar stable is one of the most important ways to reduce or prevent brain inflammation.

Look out for high blood sugar symptoms including:

  • Constant sugar cravings, especially after eating
  • Fatigue after meals
  • Constant hunger
  • Waist girth equal to or larger than hip girth
  • Difficulty losing weight
  • General fatigue
  • Frequent urination

And low blood sugar symptoms including:

  • Lack of appetite or nausea in the morning
  • Eating to relieve fatigue
  • Sugar cravings
  • Irritability, light-headedness, or dizziness when you miss a meal
  • Energy crashes in the afternoon
  • The need for caffeine for energy

Ant-inflammatory diet. The Standard American Diet (SAD) is high in sugars, processed foods, allergens, and inflammatory foods such as gluten and nightshades. An anti-inflammatory elimination diet can help you determine which foods are causing inflammation.

Manage stress. Daily stress-reduction habits such as meditation, qi gong, walking, laughter, and play are anti-inflammatory and benefit brain health.

Improve brain circulation. The better the circulation to your brain, the more oxygen and other needed nutrients you give it. Ways to help include:

  • Ginkgo biloba
  • Don’t smoke
  • Address hypothyroidism
  • Address asthma and sleep apnea

Please contact my office for guidance on how functional neurology can help you with MS and other neurological autoimmune symptoms or diseases.

Beyond babymaking: Uterus and sex hormones vital to brain

Noel Thomas ND

FNM 305 uterus and female hormones brain

It has long been thought the uterus’ only role was for housing a developing fetus, however, new research shows that the uterus may also play a vital role in the brain’s working memory. In functional neurology and functional medicine, we know how important female hormones and all the organs are to proper brain health.

The rat study divided rats into four groups:

  • Had their ovaries and uterus removed
  • Had only their uterus removed
  • Had only their ovaries removed
  • Underwent surgery but nothing was removed

Six weeks after the surgery, the researchers trained the rats to go through a maze. Then they gradually modified the maze. The researchers were surprised to discover the rats who underwent removal of the uterus performed more poorly than the other three groups, all of which performed about equally.

The rats who only had the uterus removed also showed a different hormone profile compared to the other three groups.

Although the rats who lost their ovaries performed as well on the test as those that didn’t, human studies paint a different picture: Removal of the ovaries (oophorectomy) is associated with memory lapses and an increased risk of dementia. It’s also associated with an increased risk of heart disease and osteoporosis.

This is because the ovaries make the reproductive hormones estrogen and progesterone, which are both vital to brain health.

As for the effect of a hysterectomy on brain function, the researchers cite the role of autonomic nervous system. We know the vagus nerve, a large nerve that connects the brain with the organs, plays a key role in the effect of diet and gut health on brain health. It stands to reason the back-and-forth communication between the uterus and the brain also affects brain health, especially if that communication is suddenly halted by removing the uterus.

This upends the conventional medical education that the uterus is a disposable organ with a “sole purpose.” The study’s authors remind us that nothing in the body acts in isolation, something we’ve long known in functional medicine and functional neurology.

The importance of the reproductive organs to the brain

Although an oophorectomy and/or hysterectomy may me medically necessary for conditions such as cancer, many oophorectomies and hysterectomies performed today are simply unnecessary and ignore the risks and side effects, which are severe for some women. Uterine fibroids, another common cause of hysterectomies, now have alternative treatments to removal.

Although women thankfully can use bioidentical hormone therapy to replace the loss of reproductive organ function in the case of ovary removal, an organ that communicates with the brain via the vagus nerve cannot be replaced when removed. However, functional neurology rehabilitation and vagus nerve exercises can help your brain compensate and find better function.

The importance of hormones to the brain

The female sex hormones estrogen and progesterone are vitally necessary to brain health. It’s important to use functional medicine strategies to balance your hormones for your brain’s sake.

If you are struggling with brain-based symptoms during perimenopause or after menopause, it’s important to determine whether an estrogen deficiency is the cause and to address that as low estrogen raises your risk of dementia and Alzheimer’s. Common brain-based symptoms linked to estrogen deficiency include memory loss, anxiety, depression, and insomnia.

Ask my office how functional neurology and functional medicine can help you protect your hormonal and brain health.

Sing your way to better brain health, ideally with others

Noel Thomas ND

FNM 305 singing good for brain

Communal singing was once a regular part of life, and still is in some parts of the world. These days, however, we largely leave the singing to the stars, reality singing TV shows, and drunken karaoke nights. And it’s too bad — science shows singing is enormously beneficial to the brain.

Even though language is more of a left-brain task, singing activates the right temporal lobe of the brain, thanks to the rhythmic melodies that require the right brain’s involvement. In fact, some people who lose the ability to speak due to left brain damage are still able to sing.

Researchers have long been working with singing as a way to help rehabilitate speech. The areas of the right brain involved with singing are eventually able to compensate for the damaged left brain so that the person learns to speak again.

Singing also benefits people not suffering from brain injury. One study looked at the brains of singers versus non-singers and found singers had greater connections between different areas of the brain, especially on the left side. Researchers say this is because the left side of the brain is involved in language and articulation while the right side is involved in pitch and melody.

In our digital age of information overload, the left brain is beleaguered with non-stop evaluation, processing, and analyzing all the information thrown at us. Singing nurtures the right side of the brain, which governs intuition, imagination, and creativity, and can not only help improve overall brain health, but also simply make us feel better.

Studies show many benefits to singing, including:

  • Releases serotonin, the brain chemical that keeps depression at bay
  • Releases oxytocin, the love and bonding hormone
  • Releases endorphins, our internal feel-good chemicals
  • Lowers the stress hormone cortisol
  • Communal singing even synchronizes people’s heartbeats, fostering connection and community. Singing is believed to have evolved in humans to enhance survival by fostering cooperation between people, building trust and loyalty, transmit information, and ward off enemies. Churches, choirs, and kirtans are examples where you can sing together with others.

Taken together these effects lower inflammation, elevate mood, calm anxiety and stress, strengthen bonds and trust between people, and reduce loneliness and depression.

Singing could be good for your gut

Singing has another potential benefit, especially if you do it really loudly in the shower or in your car — it can strengthen the vagus nerve, the “information highway” between the brain and the gut.

The vagus nerve is a large nerve that runs between the brain and the digestive organs. Information travels back and forth between the brain and the gut via the vagus. It explains why brain issues can cause gut issues and vice versa. For example, a poor diet or unhealthy gut bacteria can cause depression while a brain injury can suddenly cause irresolvable gut issues.

If brain health is poor or if the brain has suffered damage, the vagus nerve can under function, compromising communication between the gut and the brain. Exercises to strengthen the vagus nerve can be profoundly effective in improving this connection and overall function of both the brain and the gut.

Vagus nerve exercises include gargling vigorously several times a day, pressing on the back of your tongue with a tongue depressor, and, you guessed it, singing loudly. Take advantage of having the house or the car to yourself to really belt out some tunes so your vagus nerve is robustly activated.

The most important thing to know about singing is you don’t have to be good at it. Everyone’s voice has meaning and purpose, including yours.

Ask my office how singing and other forms of neurological rehabilitation and optimization can help improve your brain function.

Which area of your brain is failing? Look at your symptoms

Noel Thomas ND

FNM 304 areas of the brain

Understanding some brain basics helps you understand symptoms when your brain isn’t working right. The brain is our heaviest and most complex organ, using most of the body’s oxygen and about 30 percent of its energy supply.

The brain is divided into sections, each in charge of different functions although all working together. In functional neurology, we can identify areas of poor brain function and help you get them working better again with customized therapy and rehabilitation.

Frontal lobe

The frontal lobe is the area of your forehead that stretches between the temples. The human frontal lobe distinguishes us from other animals and governs much of our personality, impulse control, and the ability to reason. A frontal lobe injury can completely change your personality and ADHD is understood to affect the frontal lobe.

The frontal lobe also governs emotional drive, motivation, and planning. Poor frontal lobe function can result in an inability to set goals or follow through on projects or plans. You may feel lazy, unmotivated, or depressed if so. In fact, depression is simply a frontal lobe impairment.

The frontal lobe activates the muscles. Poor frontal lobe function can result in moving more slowly or not swinging your arms when you walk.

Fine-motor coordination also falls under the frontal lobe’s duties. This is needed for handwriting, embroidery, and other detailed movements of the hands. As the frontal lobe degenerates it’s typical for handwriting to worsen.

Symptoms and signs of possible frontal lobe impairment

  • Slower and less powerful muscle movements
  • Depression
  • Mental sluggishness and laziness
  • Poor impulse control
  • Poor social behavior and judgment
  • Poor handwriting
  • Poor cognitive function, such as poor math or planning skills
  • Trouble learning complex things, such as math, new languages,
or philosophy
  • Poor muscle-coordination

Temporal lobe

The temporal lobes are located on either side of the brain above the ears. They govern hearing, speech, memory, emotions, and distinguishing smells.

Tinnitus (ringing in the ear) is a common symptom of temporal lobe dysfunction, although not all tinnitus is due to temporal lobe degeneration, as is difficulty distinguishing between different tones.

Within the temporal lobes is the hippocampus, the seat of learning and memory. Degeneration of the hippocampus leads to poor memory and eventually Alzheimer’s disease.

It is also involved with spatial orientation, sense of direction, and circadian rhythm (sleep-wake cycle).

Symptoms and signs of possible temporal lobe impairment

  • Poor memory
  • Difficulty hearing with background noise
  • Episodes of tinnitus
  • Abnormal shifts of fatigue throughout the day
  • Ongoing episodes of insomnia

Parietal lobe

The parietal lobes are located behind the ears and perceive and interpret sensations such as touch, pressure, texture, weight, size, or shape. The parietal lobe function also tells the body where it is in its environment. Reoccurring injuries are common with parietal lobe impairment.

Symptoms and signs of possible parietal lobe impairment

  • Feeling unstable in darkness or with thick or high-heel shoes
  • Misjudging where your body is in relation to your environment
  • Unable to recognize objects through touch
  • Difficulty perceiving where your limbs are and becoming prone to falls and sprains

Cerebellum

Your cerebellum is two lobes at the back of the head, directly above your neck. It calibrates muscle coordination and balance and filters information before sending it to the brain.

Symptoms and signs of possible cerebellum impairment

  • Episodes of dizziness or vertigo
  • Nausea from visual inputs (car sickness)
  • Poor balance
  • Subtle shakes at the end stage of hand movement

Occipital lobe

The occipital lobe is in the back of the brain and processes visual information.

Symptoms of possible occipital lobe impairment

  • Difficulty processing visual information and recognizing shapes, colors, and motion
  • Visual hallucinations
  • Visual floaters
  • Visual persistence or reoccurrence of the visual image after it has been removed

Any of the above symptoms in adults usually mean degeneration in those areas of the brain while in children it can signal poor brain development. If your overall brain function is declining, you may have many of these symptoms.

The good news is the brain is very receptive to improving with the right nutrients and input. Functional neurology excels in identifying areas of brain dysfunction and customizing brain rehabilitation specifically for your brain. Ask my office for more information.